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ABSTRACT
Takeaway recommender systems, which aim to accurately pro-
vide stores that offer foods meeting users’ interests, have served
billions of users in our daily life. Different from traditional recom-
mendation, takeaway recommendation faces two main challenges:
(1) Dual Interaction-Aware Preference Modeling. Traditional
recommendation commonly focuses on users’ single preferences
for items while takeaway recommendation needs to comprehen-
sively consider users’ dual preferences for stores and foods. (2)
Period-Varying Preference Modeling. Conventional recommen-
dation generally models continuous changes in users’ preferences
from a session-level or day-level perspective. However, in practical
takeaway systems, users’ preferences vary significantly during the
morning, noon, night, and late night periods of the day. To address
these challenges, we propose a Dual Period-Varying Preference
modeling (DPVP) for takeaway recommendation. Specifically, we
design a dual interaction-aware module, aiming to capture users’
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dual preferences based on their interactions with stores and foods.
Moreover, to model various preferences in different time periods of
the day, we propose a time-based decomposition module as well as
a time-aware gating mechanism. Extensive offline and online ex-
periments demonstrate that our model outperforms state-of-the-art
methods on real-world datasets and it is capable of modeling the
dual period-varying preferences. Moreover, our model has been de-
ployed online onMeituan Takeaway platform, leading to an average
improvement in GMV (Gross Merchandise Value) of 0.70%.
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Figure 1: Illustration of differences between traditional rec-
ommendation and takeaway recommendation.

1 INTRODUCTION
With convenient online ordering and offline delivery services, take-
away platforms (e.g., Meituan1/Uber Eats2) are playing an increas-
ingly important role in our daily life. The total number of users
in takeaway platforms has reached approximately 2.5 billion in
2022 [1]. Aiming to accurately provide stores with foods that meet
users’ interests from a large store candidate pool, takeaway recom-
mender systems generally capture users’ preferences for foods or
stores through their historical interaction behaviors with stores or
foods. Compared with traditional recommendation, takeaway rec-
ommendation appears greatly more difficult due to the complicated
relationships among users, stores and foods. Thus, takeaway recom-
mender systems have attracted great attention from the research
community and industry field [16, 23, 31, 38, 40].

Generally, traditional recommendation [3, 10, 27, 41, 44] models
users’ period-agnostic preferences from the single historical inter-
action data between users and items as Figure 1(a) shown. However,
the following two notable characteristics of takeaway systemsmake
it challenging to directly apply traditional methods for takeaway
recommendation.

(1) Dual Interaction-Aware Preference. As shown in Figure 1,
traditional recommendation, such as e-commerce recommenda-
tion, usually model user-item simple binary interaction for users’
preferences for items, while the interaction between users, stores,
and foods in takeaway recommendation appears more complex
including three types of interaction relations. In particular, users’
dual interactions with stores and foods imply users’ preferences at
different levels. Additionally, with the auxiliary relations between
stores and foods, there is a more complex interplay between the
users’ dual preferences. For example, Tom might be fond of food
baozi instead of caring about the store, while Amy might pay more
attention to the brand of the dine-in store. Also, some people may
weigh both preferences for the store and its food information, such
as making a balance between high store ratings and low food prices.

(2) Period-Varying Preference. As depicted in Figure 1, in
traditional recommendation, there is no obvious feature of user
preferences changing with the time period of the day (i.e., period-
agnostic preference modeling), while in takeaway recommendation,

1https://about.meituan.com/en
2https://www.ubereats.com

user preferences, especially for food, change significantly in dif-
ferent periods of a day. Visually, we obtain a total of 100,000 click
interactions between users and five major food categories in a real
takeaway dataset, and further present the proportion distribution
of clicks on different categories of food in each period (i.e., Morn-
ing/Noon/Night/Late Night) according to the click occurring time
in Figure 2. Note that as a traditional Chinese food, baozi generally
serves as breakfast in the Morning. Apparently, in the Morning
period, users are greatly more likely to interact with baozi than
barbecue, while the opposite is true during Late Night. Particularly,
user interactions in different periods also imply similar preferences.
For example, when a user prefers spicy food, he/she is inclined to
interact with spicy-flavored food over different periods.

Existing takeaway recommendation methods commonly lever-
age the coarse-grained single interaction data between the user
and store or food and may further utilize the time as auxiliary
information [16, 23, 38, 40]. With feature-enriched user and store
representations as input, [40] utilized the classical two-tower model
to make store recommendations based on the historical interaction
data between users and stores. Further, [16] adopted an attention-
based fusion mechanism at different times for users’ single-level
time-enhanced preference for foods, which is incapable of modeling
users’ period-varying preferences within a day. In brief, the exist-
ing methods have not systematically modeled users’ dual period-
varying preferences for food and store.

To address the above issues, we propose a novel model, named
DPVP, for takeaway recommendation. Specifically, we design a
dual interaction-aware module, aiming to capture users’ prefer-
ences based on the ternary interaction data shown in Figure 1(b).
Furthermore, We propose a time-based decomposition module to
capture users’ dual-period-specific preferences in the period hier-
archy and simultaneously learn users’ period-shared preferences.
Then, a time-aware gate network is utilized to fuse the user’s dual
period-specific and period-shared preferences to obtain the user’s
dual period-varying preferences. Eventually, the model make a pre-
diction based on the balance between the users’ dual period-varying
preferences for stores and foods. To sum up, our contributions are
listed below:

• We highlight the challenges of dual interaction-aware and
time-varying preferencemodeling in takeaway recommenda-
tion, which is more complicated than traditional recommen-
dation modeling, and further design a novel model to address
these challenges. To the best of our knowledge, we are the
first to systematically model dual time-varying preferences
for takeaway systems.

• We propose a dual interaction-aware module for capturing
users’ dual preferences. Besides, we design a time-based
decomposition to model users’ period-specific preferences in
the period hierarchy, and further design a time-aware gate
to adaptively model users’ period-varying preferences.

• Both offline and online experiments were conducted to show
the effectiveness of our model and the great ability of the
model to capture the dual period-varying preferences for
takeaway recommendation.
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Figure 2: Proportion distribution of clicks between users and
fivemajor food categories in four different time periods. Note
that the sum of the proportions of the five food categories in
each time period is equal to 1.

2 RELATEDWORK
2.1 Takeaway Recommendation
In the takeaway recommender system, multiple interactions of
user, store, and food lead to complex relationships among the three,
which is different from the simple binary interaction relationship
usually modeled in traditional recommender systems [3, 10, 27, 41,
44]. For example, on the basis of the assumption that users with
similar behaviors have similar preferences on stores, traditional
Collaborative Filtering (CF) [6] has been extensively applied in
modern takeaway recommender systems. Since CF-based meth-
ods [10, 14, 25] suffer from data sparsity and cold start issues,
many works tried to utilize additional information such as time
information [16, 23, 31, 38], spatial information[16, 23, 38] and
attributes [16, 31, 40] to enhance recommendation accuracy. For
example, DAT [40] enriched the user and store representations
based on the corresponding user features and store attribute infor-
mation for the recommendation. Moreover, TRISAN [23] adopted
an attention-based fusion mechanism to capture the rich interplay
between spatial information and time information to improve rec-
ommendation performance. Further, considering the importance of
time information in takeaway systems, some methods attempted to
not simply utilize the time information as the auxiliary input of the
designed model. For example, AutoIntent [15] treated the interac-
tion time factors as vertex nodes in graphs and then extracted the
high-order relations of three groups of hypergraphs among user
preferences for the food category factor, time factor, and spatial
factor respectively for the recommendation. However, existing take-
away recommender systems rarely involve the inherent ternary
complex user-store-food relationships and period-varying charac-
teristics in the systems.

2.2 Graph-based Recommendation
With the rapid development and huge success of Graph Neural
Network (GNN) in various machine learning areas [8, 36, 42, 45],
great efforts have been devoted to applying it to the recommenda-
tion [5, 15, 22, 35, 39]. Most data in recommender systems essen-
tially implies graph structure [2, 39]. For example, the interaction
data can naturally form a bipartite graph between user and item
nodes, with observed interactions denoted by links between cor-
responding nodes. Given the graph data, GNN mainly focuses on

iteratively aggregating information from neighbors and integrating
the aggregated information with the current central node repre-
sentation during the propagation process. For example, GC-MC [2]
aggregated the information from neighbors based on the types
of ratings. Standard GCN [13] factorized user-item rating matri-
ces into user and item embedding matrices for recommendation.
NGCF [32] advanced GCN by additionally encoding the interac-
tions via an element-wise multiplication. Due to the discovery of the
non-necessity of nonlinear activation and feature transformation in
GCN [33], SGCN [33] and LightGCN[9] were proposed for recom-
mendation by removing these two parts. Moreover, owning to the
powerful representation ability of GNN, a great number of GNN-
based methods [34, 37, 39, 43] have been deployed in the industry
to produce high-quality recommendation results. For example, Pin-
sage [39] combined efficient random walks and graph convolutions
to generate embeddings of items that incorporate both graph struc-
ture as well as item feature information, which was the first work
applying GCN in industrial recommender systems. DANSER [34]
took advantage of the interaction between users and articles and so-
cial relations for a real-world article recommender system, WeChat
Top Story. Different from previous works, our method retains the
traditional user–item structure, extending it to dual period-varying
tripartite graphs among users, stores and foods, aiming at modeling
the users’ dual interaction-aware and period-varying preferences
for takeaway recommendation.

3 PRELIMINARIES
In practical takeaway systems, an interaction commonly forms
“who interacts (e.g., clicks) which food in which store at what time",
which involves a user, a store, several foods as well as a time period.
To comprehensively model the interactions, we define the period-
varying ternary interaction data in this work as follows:

Definition 1.Period-Varying Ternary InteractionData. Given
U,S,O,M denoting the universal sets of users, stores, foods, and
time periods, each record 𝑥 in the interaction dataset X can be
formulated as 𝑥 = (𝑢, 𝑠,𝑂,𝑚), which represents that user 𝑢 ∈ U in-
teracts𝑁 foods𝑂 = {𝑜1, 𝑜2, · · · , 𝑜𝑁 } (where 𝑜 𝑗 ∈ O,∀𝑗 = 1, 2, ..., 𝑁 )
in store 𝑠 ∈ S at time period𝑚 ∈ M.

Specifically, we divide a day into 4 time periods: Morning, Noon,
Night and Late Night, i.e.,𝑀 = 4 with𝑀 denoting the number of
time periods |M|. Example interaction records can be found in Fig-
ure 1(b). Based on the ternary interaction data, the full-period global
graph including user-store, user-food and store-food interactions
can be defined as follows:

Definition 2.Full-Period Global Graph. Given the ternary
interaction datasetX, the full-period global graph can be formulated
as G = {U∪S∪O, EUS∪EUO∪ESO}. Let EUS, EUO and ESO
be edges that represent user–store, user–food, store–food relations.
For each record 𝑥 = (𝑢, 𝑠,𝑂,𝑚), there exists the nodes {𝑢, 𝑠, 𝑜 𝑗 }
and the bi-directional interaction edges (𝑢, 𝑠) ∈ EUS, (𝑢, 𝑜 𝑗 ) ∈
EUO , (𝑠, 𝑜 𝑗 ) ∈ ESO . Each edge is attached with a time period
attribute𝑚.

Particularly, G is depicted in Figure 3(a). In this work, we only
focus on recommending stores, an urgent practical task for take-
away applications, while the food recommendation is left as future
work. In order to consider the user’s preference for food in the store
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recommendation, we define the most frequently clicked food set
of the store 𝑠 with the fixed size 𝑁 ′ as Γ(𝑠). Based on the above
definitions, the takeaway recommendation task can be defined as
follows:

Definition 3. Takeaway Recommendation. Given the period-
varying ternary interaction data X and full-period global graph G,
DPVP aims to recommend the stores 𝑠 ∈ S with the food set Γ(𝑠)
that user 𝑢 would be interested in at time period𝑚.

4 METHODOLOGY
In this section, we will illustrate in detail how to realize the afore-
mentioned takeaway recommendation based on the period-varying
ternary interaction data and full-period global graph constructed
based on it. The overview of our proposed DPVP is depicted in
Figure 3. Firstly, we propose an interaction-aware module to de-
compose the full-period global graph into store-level and food-level
graphs, which can also be denoted as dual interaction graphs. Then,
we design a unified time-based decomposition module to deal with
the dual graphs to obtain dual period-specific graphs. After aggrega-
tion on dual full-period and period-specific graphs, our model can
model users’ dual period-shared and period-specific preference rep-
resentations. In particular, due to the multiple foods in the food set,
a user-aware gate mechanism is designed to effectively ensemble
different food information to obtain the personalized representation
of the food set. Then, a time-aware gate network is designed to
adaptively obtain the dual period-varying representations, finally
followed by a prediction layer for our takeaway recommendation.

In the following, we first describe the construction process of
dual period-varying graphs including the dual interaction-aware
and time-based decomposition modules in Section 4.1. Then, we de-
tailedly illustrate the aggregation of dual interaction-aware graphs
for enriching the representations as well as the user-aware gating
network for personalized food representation in Section 4.2. Further-
more, we present the modeling of the period-varying preferences
in Section 4.3, followed by the prediction layer and optimization
process illustrated in Section 4.4.

4.1 Dual Period-Varying Multigraphs
Construction

4.1.1 Dual Interaction-Aware Module. To capture the dual pref-
erences, we propose an interaction-aware module to decompose
full-period global graph into the dual interaction graphs, i.e., food-
level and store-level graphs shown in Figure 3(b). Specifically, in
the food-level graph with food as the central node, there exist two
kinds of interaction edges: (1) user-food interaction edge implies
the user’s preference for food; (2) food-store edge which can form
a food-store-food structure indicating the same-store relationship
between foods. Similarly, in the store-level graph with the store as
the central node, there are user-store and store-food edges, where
the formed store-food-store structure implies the food similarity of
stores. Thereby, the dual interaction graphs including food-level
and store-level graphs can be correspondingly formulated as:

G [𝑜 ] = {U ∪ S ∪ O, EUO ∪ ESO},

G [𝑠 ] = {U ∪ S ∪ O, EUS ∪ ESO}.
(1)

4.1.2 Time-Based Decomposition Module. With the aim of learning
the period-varying preferences, we design a unified time-based
decomposition module to deal with the dual interaction graphs.
Specifically, each edge set in dual graphs is unified as E, and the
time period of each interaction edge 𝑐 is denoted as 𝑐𝑡 . In the time-
based decomposition module, the hard weight of each edge 𝑐 and
the edge set in time period𝑚 can be formulated as:

𝑤𝑚
𝑐 = I(𝑐𝑡 =𝑚),

E𝑚 = {𝑤𝑚
𝑐 ∗ 𝑐},∀𝑐 ∈ E,

(2)

where I(·) represents the indicator function. Thereby, given the
time period𝑚 of each interaction data, the dual interaction graphs
G [𝑜 ] ,G [𝑠 ] can be decomposed into𝑀 dual period-specific graphs
depicted in Figure 3(c) as ∀𝑚 = 1, 2, ..., 𝑀 :

G [𝑜 ]
𝑚 = {U ∪ S ∪ O, E𝑚UO ∪ E𝑚

SO},

G [𝑠 ]
𝑚 = {U ∪ S ∪ O, E𝑚US ∪ E𝑚

SO}.
(3)

4.2 Dual Interaction-Aware Preference
4.2.1 Dual Embedding Layers. Before aggregating graphs, we pro-
pose to initialize the embeddings of users, stores, and foods. Since
we hope to capture the user’s preferences for two completely dif-
ferent types of entities (i.e., store and food) in dual subgraphs, we
initialize two groups of embeddings for the two graphs. Moreover,
intuitively, users hold the aforementioned period-shared prefer-
ences in different time periods and there is no significant difference
in the meaning of foods and stores over different time periods.
Therefore, we utilize the same initialization embedding group of
the same interaction-aware level for the subgraphs of different time
periods at the same food/store level.

Take a user 𝑢 ∈ U as an example: after turning 𝑢 into the
food-level user matrix 𝐻 [𝑜 ]

𝑢 ∈ R |U |×𝑑 and the store-level matrix
𝐻

[𝑠 ]
𝑢 ∈ R |U |×𝑑 with 𝑑 denoting the embedding dimension, we

can obtain the initialization embedding of user node 𝑢 as ℎ [𝑜 ],0𝑢

and ℎ
[𝑠 ],0
𝑢 respectively. For the subgraphs of time period 𝑚, the

user embeddings of the food-level and store-level are initialized as
ℎ
[𝑜 ],0
𝑢,𝑚 = ℎ

[𝑜 ],0
𝑢 and ℎ [𝑠 ],0𝑢,𝑚 = ℎ

[𝑠 ],0
𝑢 correspondingly. Since the dual

interaction-aware preference modeling process of dual graphs in all
periods and period-specific graphs is the same and the aggregation
method of the food-level graphs is similar to that of store-level
graphs, we mainly elaborate the food-level period-specific prefer-
ence modeling process of graphs G [𝑜 ]

𝑚 in time period𝑚.

4.2.2 Single-Level Preference. Following [8, 28], we simply apply
the mean-pooling operation to aggregate neighbor embeddings
in the food-level graph G [𝑜 ]

𝑚 . In detail, the aggregated neighbor
embedding for the central food node in the food-level graph can be
formulated as:

h[𝑜 ],𝑙+1𝑜,𝑚 =
1

𝑐
(𝑢,𝑜 )
𝑜,𝑚

∑︁
(𝑢,𝑜 ) ∈E𝑚

UO

h[𝑜 ],𝑙𝑢,𝑚 + 1

𝑐
(𝑠,𝑜 )
𝑜,𝑚

∑︁
(𝑠,𝑜 ) ∈E𝑚

SO

h[𝑜 ],𝑙𝑠,𝑚 , (4)

where 1
𝑐
(𝑢,𝑜 )
𝑜,𝑚

and 1
𝑐
(𝑠,𝑜 )
𝑜,𝑚

are normalization constants and 𝑐 (𝑢,𝑜 )𝑚 /𝑐 (𝑠,𝑜 )𝑚

is equal to the in-degree from neighbor user/store nodes to the food
node of 𝑜 . Since both the user and store interact solely with food
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Figure 3: Overview of our proposed DPVP model.

nodes in the food-level graph, the aggregated neighbor representa-
tions of the user and store can be formulated as:

h[𝑜 ],𝑙+1𝑢,𝑚 =
1

𝑐
(𝑢,𝑜 )
𝑢,𝑚

∑︁
(𝑢,𝑜 ) ∈E𝑚

UO

h[𝑜 ],𝑙𝑜,𝑚 ,

h[𝑜 ],𝑙+1𝑠,𝑚 =
1

𝑐
(𝑠,𝑜 )
𝑠,𝑚

∑︁
(𝑠,𝑜 ) ∈E𝑚

SO

h[𝑜 ],𝑙𝑜,𝑚 .

(5)

Eventually, theweighted-pooling operation is applied to generate
the aggregated user/food representations in the food-level graph at
time period𝑚 by operating on propagated 𝐿 layers:

h[𝑜 ],∗𝑜,𝑚 =

𝐿∑︁
𝑙=0

𝛼𝑙h
[𝑜 ],𝑙
𝑜,𝑚 , h[𝑜 ],∗𝑢,𝑚 =

𝐿∑︁
𝑙=0

𝛼𝑙h
[𝑜 ],𝑙
𝑢,𝑚 , (6)

where 𝛼𝑙 denotes the importance of the 𝑙-th layer representation
in constituting the final embedding. Similar to LightGCN [9], we
uniformly set 𝛼𝑙 as 1/(𝑙 + 1) since the focus of our work is not on
the choice of 𝛼𝑙 . Therefore, after the aggregation of the food-level
graph, we can obtain the food-level representations of the user
𝑢 and food 𝑜 as h[𝑜 ],∗𝑜,𝑚 and h[𝑜 ],∗𝑢,𝑚 . After the similar aggregation
method, we can also obtain the final aggregated embeddings of user
𝑢 and store 𝑠 in store-level graph as h[𝑠 ],∗𝑢,𝑚 , h[𝑠 ],∗𝑠,𝑚 .

4.2.3 Personalized Food Representation. For each store, its 𝑁 ′ most
frequently clicked foods are selected as its candidate foods. How-
ever, users’ interest in food varies from person to person. For in-
stance, user A may prefer baozi, while user B is more interested
in noodles in the same store. In order to model the personalized
food representation, a user-aware gate mechanism is designed to
effectively ensemble different food information in the candidate
food set 𝑂 = Γ(𝑠). Specifically, the user-aware gating network 𝑔𝑢

produces a distribution over 𝑁 ′ foods based on the input, and the
final ensembled personalized food representation is formulated as
the weighted sum of the graph representations of all the candidate
foods of the store:

𝑔𝑢 (𝑜𝑖 ) =
𝑒𝑥𝑝 (h[𝑜 ],∗𝑜𝑖 ,𝑚 × h[𝑜 ],∗𝑢,𝑚

⊤
)

𝑁 ′∑
𝑗=1

𝑒𝑥𝑝 (h[𝑜 ],∗𝑜 𝑗 ,𝑚 × h[𝑜 ],∗𝑢,𝑚

⊤
)
,

h[𝑜 ],∗
𝑂,𝑚

=

𝑁 ′∑︁
𝑖=1

𝑔𝑢 (𝑜𝑖 )h[𝑜 ],∗𝑜𝑖 ,𝑚 .

(7)

4.3 Period-Varying Preference
To capture the period-varying patterns of the interaction, we obtain
the period-specific enriched graph embedding group at each time
period𝑚 as h[𝑜 ],∗𝑢,𝑚 , h[𝑜 ],∗

𝑂,𝑚
, h[𝑠 ],∗𝑢,𝑚 , h[𝑠 ],∗𝑠,𝑚 . Ideally, when making a rec-

ommendation in time period𝑚, DPVP ought to merely utilize the
corresponding graph embedding group in time period𝑚 for pre-
diction. In other words, this is a hard one-hot integration method.
However, considering the following factors: (1) the user’s inter-
actions in different periods imply similar preferences; (2) period-
specific data appear sparse compared to full-period interaction
data, we adopt a soft time-aware gating method instead of the
hard integration method for the integration of representations in
different time periods. The soft time-aware gate combines the rep-
resentations in different time periods and full time periods, and
further filters out irrelevant information while strengthening the
relevant information of the target time period. Without loss of
generality, due to the same integration methods of representations
h[𝑜 ],∗𝑢,𝑚 ,h[𝑜 ],∗

𝑂,𝑚
,h[𝑠 ],∗𝑢,𝑚 ,h[𝑠 ],∗𝑠,𝑚 , we take h[𝑜 ],∗𝑢,𝑚 as an example to illustrate
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the time-aware gate integration as follows:

𝑔𝑚 (𝑢,𝑚) =
𝑒𝑥𝑝 (h[𝑜 ],∗𝑢,𝑚 × [h[𝑜 ],∗𝑢 , e𝑚]

⊤
)

𝑀∑
𝑘=1

𝑒𝑥𝑝 (h[𝑜 ],∗
𝑢,𝑘

× [h[𝑜 ],∗𝑢 , e𝑘 ]⊤)
,

e[𝑜 ]𝑢,𝑚 =

𝑀∑︁
𝑚=1

𝑔𝑚 (𝑢,𝑚)h[𝑜 ],∗𝑢,𝑚 ,

(8)

where [·] denotes the operation of concatenation and e𝑚 indicates
the embedding of time period𝑚.

4.4 Prediction and Optimization
After the above operations, we obtain the dual period-varying rep-
resentations. That is, e[𝑜 ]𝑢,𝑚, e[𝑜 ]𝑜,𝑚 generated from food-level graphs
and e[𝑠 ]𝑢,𝑚, e[𝑠 ]𝑠,𝑚 aggregated from store-level graphs. Since the can-
didate food set 𝑂 contains the fine-grained food information of
the store 𝑠 , we employ MLP (Multi-Layer Perceptrons) to build a
bridge between fine-grained food and coarse-grained store levels
to predict how likely the user would adopt the store. Eventually,
the predicted score of candidate store 𝑠 with candidate food set 𝑂
for user 𝑢 at time period𝑚 can be formulated as:

𝑦𝑢,𝑠,𝑂,𝑚 = 𝑀𝐿𝑃 ( [e[𝑜 ]𝑢,𝑚, e[𝑜 ]
𝑂,𝑚

, e[𝑠 ]𝑢,𝑚, e[𝑠 ]𝑠,𝑚]). (9)

Then, we adopt the Bayesian Personalized Ranking (BPR) [25]
loss to emphasize that the observed interaction should be assigned
a higher score than unobserved ones as follows:

L =
∑︁

(𝑢,𝑠,𝑠′ ) ∈𝑌,𝑂=Γ (𝑠 ),𝑂 ′=Γ (𝑠′ )
− ln𝜎 (𝑦𝑢,𝑠,𝑂,𝑚 − 𝑦𝑢,𝑠′,𝑂 ′,𝑚), (10)

where 𝑌 = (𝑢, 𝑠, 𝑠′) | (𝑢, 𝑠) ∈ 𝑅+, (𝑢, 𝑠′) ∈ 𝑅− denotes the pairwise
training data; 𝑅+ indicates the positive observed interaction set,
and 𝑅− represents the randomly-sampled negative set; 𝜎 (·) stands
for the sigmoid function.

5 EXPERIMENTS
In this section, we present empirical results to demonstrate the ef-
fectiveness of our proposed DPVP. These experiments are designed
to answer the following research questions:

• RQ1 How does DPVP perform compared with state-of-the-
art recommendation models?

• RQ2What is the effect of dual interaction-aware preference
and period-varying preference modeling in our proposed
DPVP?

• RQ3 How does DPVP perform in the real-world online rec-
ommendations with practical metrics?

• RQ4 How do hyper-parameters in DPVP impact recommen-
dation performance?

5.1 Experimental Settings
Dataset Description. We conduct experiments on two real-world
datasets3 (denoted as MT-large and MT-small datasets, with large
differences in data size) of two cities in two different time intervals
from the Meituan Takeaway platform, one of the largest takeaway
3We collected the Meituan datasets because no public datasets are suitable for our task.
We will release part of experimental datasets later and our code will be available in
https://github.com/17231087/DPVP.git.

platforms in China. The time span of both datasets is eight days.
In order to model users’ period-varying preferences, we group
the whole day into four time periods, which are 5: 00-10: 00 for
Morning, 10: 00-15: 00 for Noon, 15:00-20:00 for Night and 20:00-
5:00+1 for Late Night. To evaluate the model performance, we split
the first six days’ data for training, the following one-day data for
validation, and the last day’s data for testing. For each ground truth
test data, we randomly sample 99 stores that user did not interact
with as negative samples. Detailed statistics of these two datasets
and detailed implementation are presented in Appendix A.1 and A.2.

Evaluation Metrics. To evaluate the performance of the recom-
mendationmodels, we adopt four commonly-usedmetrics including
three ranking metrics MRR[24], NDCG@K [12] and Hit@K (we set
K as 10 by default), and an accuracy metric AUC[7].

5.2 Overall Performance Comparison (RQ1)
We compare our proposed models with four graph-free baselines
(i.e., NeuMF [10], DNN, ENMF [4], SimpleX [19]) and seven graph-
based baselines (i.e., GCN [26], GAT [30], NGCF [32], HGT [11],
LightGCN [9], UltraGCN [20] and SVD-GCN [21]). The detailed
information of these baselines is provided in Appendix A.3. In
particular, in order to test whether the improvement of the model
performance is caused by the dual interaction-aware and period-
varying preference modeling proposed in our DPVP rather than the
graph aggregation method of DPVP, we design DPVP(full-period
global graph) whichmakes prediction based on the full-period global
graph depicted in Figure 3(a). The overall performance on two
adopted datasets is reported in Table 1. From the results, we can
observe that:

• DPVP significantly outperforms all the competitive baselines.
Compared to the best performance of baselines, for the two
datasets, DPVP gains an average 5.86% improvement in terms
of the three ranking metrics as well as an average 1.84%
improvement with respect to AUC. Such significant gains
verify that DPVP can greatly enhance the recommendation
performance.

• The performance of DPVP(full-period global graph) with
the same mean-pooling aggregation on the full-period global
graph is remarkably lower than that of DPVP. This observa-
tion demonstrates that the significant improvement of our
model mainly lies in our proposed dual interaction-aware
and period-varying preference modeling.

• The graph-basedmethods universally outperformmost graph-
free methods, indicating the importance of enhancing inter-
actions by incorporating high-order neighborhood informa-
tion to alleviate data sparsity.

• The performance ofMT-largewith large data volume is better
than that of MT-small with small data volume for the same
model. The main reason would be that with more data in
each time period, the model performs better in modeling
time-related behaviors.

5.3 Ablation Study (RQ2)
As the modeling of dual interaction-aware and period-varying pref-
erences are the core of DPVP, we conduct the following ablation
studies to investigate the effectiveness of these core modules.
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Model MT-small MT-large
Hit@10 NDCG@10 AUC MRR Hit@10 NDCG@10 AUC MRR

NeuMF 0.3957 0.2104 0.7814 0.1788 0.4554 0.2488 0.8198 0.2101
DNN 0.4190 0.2503 0.7549 0.2188 0.6073 0.3898 0.7903 0.3174
ENMF 0.5513 0.3845 0.7356 0.3450 0.5911 0.4285 0.7496 0.3887
SimpleX 0.4851 0.2710 0.8171 0.2276 0.5634 0.3289 0.8457 0.2763

GCN 0.4446 0.2478 0.7968 0.2110 0.6288 0.4199 0.8535 0.3698
GAT 0.4384 0.2488 0.7529 0.2105 0.6202 0.3871 0.8361 0.3290
NGCF 0.5009 0.2839 0.8163 0.2411 0.6358 0.4222 0.8593 0.3725
HGT 0.4467 0.2474 0.8032 0.2097 0.6217 0.3905 0.8352 0.3329

LightGCN 0.4942 0.2784 0.7979 0.2330 0.6309 0.4250 0.8562 0.3756
Ultra-GCN 0.3666 0.2057 0.7624 0.1777 0.4959 0.3164 0.7751 0.2840
SVD-GCN 0.5745 0.3973 0.8205 0.3402 0.6370 0.4248 0.8609 0.3736

DPVP(full-period global graph) 0.5094 0.3022 0.7875 0.2562 0.6324 0.4117 0.8621 0.3592
DPVP 0.6167* 0.4180* 0.8392* 0.3715* 0.6599* 0.4563* 0.8741* 0.4075*
Imp% +7.3455 +5.2102 +2.2791 +7.6812 +3.5950 +6.4877 +1.3919 +4.8366

Table 1: Overall performance on MT-small and MT-large datasets. The last row Imp% indicates the relative improvements of
the best performing method (bolded) over the strongest baselines (underlined) and marker * indicates that the improvement is
statistically significant compared with the best baseline (paired t-test with p-value < 0.005).

Model MT-small MT-large
Hit@10 NDCG@10 AUC MRR Hit@10 NDCG@10 AUC MRR

DPVP(user-food) 0.3990 0.2531 0.7487 0.2298 0.4054 0.2299 0.7651 0.1986
DPVP(food-level) 0.4438 0.2750 0.7804 0.2444 0.4547 0.2842 0.7845 0.2602
DPVP(user-store) 0.5355 0.3432 0.7888 0.3017 0.6110 0.3879 0.8558 0.3359
DPVP(store-level) 0.5461 0.3588 0.7902 0.3161 0.6271 0.4158 0.8639 0.3664
DPVP(global level) 0.5865 0.3909 0.8296 0.3467 0.6494 0.4476 0.8714 0.3998

DPVP 0.6167* 0.4180* 0.8392* 0.3715* 0.6599* 0.4563* 0.8741* 0.4075*

Table 2: Impact of dual interaction-aware preference modeling and * indicates p-value < 0.005.

Figure 4: Impact of period-varying modeling on results for different time periods in MT-small dataset.

5.3.1 Impact of Dual Interaction-Aware Preference. To investigate
whether DPVP can benefit from dual interaction-aware preference
modeling, we propose five ablation versions of DPVP: (1) DPVP
(user-food). This baseline only considers the user-food interactions;
(2) DPVP(user-store). This baseline merely considers the binary
user-store interactions, usually modeled by the traditional recom-
mender systems. (3) DPVP(food-level). This baseline only retains
food-level graphs by removing the store-level graphs in Figure 3(b);
(4) DPVP(store-level). This baseline only retains store-level graphs

by removing the food-level graphs depicted in Figure 3(b); (5) DPVP
(global level). This baseline directly performs time-based decompo-
sition on full-period global graph without dual interaction-aware
module, that is G [𝑜 ]

∗ ,G [𝑠 ]
∗ are replaced with G∗). The third and

fourth baselines are devised to verify whether our method is still
effective with only a single-level interaction graph. For fairness,
in order to avoid the influence of the parameter amount on the re-
sults, we double the embedding size of the single-level interaction
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Figure 5: Impact of period-varying modeling on results for different time periods in MT-large dataset.

Figure 6: Visualization of the average predicted scores of five
major food categories over different time periods.

and single-level graph model so that the parameter amount is the
same as that of DPVP model. Besides, for the global level model,
we replace the dual aggregated user representations e[𝑜 ]𝑢 , e[𝑠 ]𝑢 with
the global-level graph aggregated user representation respectively
as part of the input of the prediction layer, so that the parameter
amount is consistent with that of DPVP. From the results shown in
Table 2, we have the following observations:

• As we expected, compared with the models that only con-
sider binary interaction information DPVP(user-food) and
DPVP(user-store), the models that consider ternary interac-
tive information has better performance.

• The performance of the single-level model is significantly
worse than that of the dual interaction-aware model. This is
within expectation because dual interaction-aware modeling
can capture the additional level of user preferences compared
to single-level modeling.

• Encouragingly, the performance of preferencemodeling based
on dual interaction-aware graphs is better than that based
on global-level graphs regardless of hierarchical modeling.
This observation indicates the effectiveness of our proposed
dual interaction-aware preference modeling. This result is
not surprising because the global level graph models the
interaction at the two levels at the same time, which may
confuse the user’s preferences at the two levels, ultimately
resulting in poor user representation. On the contrary, our
model explicitly captures the hierarchical preference at dif-
ferent levels by considering the interaction with users at
different levels.

5.3.2 Impact of Period-Varying Modeling. In order to verify the
effectiveness of period-varying preference modeling, we conduct
three additional ablation baselines as follows:

• SVD-GCN(time emb). On the basis of the original SVD-GCN
with only user and store input, the time embedding e𝑚 is
added as an input to the prediction layer of SVD-GCN.

• DPVP(w/o time). This baseline completely removes the mod-
eling of the period-specific subgraphs with only the dual
interaction graphs in Figure 3(b), which is designed to prove
the effectiveness of period-varying modeling in DPVP.

• DPVP(time emb). This baseline removes the modeling of
the period-specific graphs in Figure 3(c) and similarly adds
time embedding as input e𝑚 , which is devised to validate
whether our period-varying modeling method is better than
the method of simply adding period information.

To evaluate the improvement of our model in different periods,
Figure 4 and Figure 5 present the performance of the competitive
baselines SVD-GCN, DPVP as well as the above-mentioned three
ablation baselines on the two datasets. Details of performance on
AUC metric for the two datasets can be found in Appendix A.4.
Please note that the Full in figures represents the performance of
models for full-period test data without distinguishing the time
periods. According to the results, we can observe that:

• Encouragingly, DPVP achieves the best results under various
metrics over different time periods.

• With time embedding as input, the performance of SVD-
GCN(time emb) and DPVP(time emb) is improved compared
to the corresponding baselines (i.e., SVD-GCN andDPVP(w/o
time)) ignoring the time information, which verifies that
time information is beneficial to the modeling of takeaway
recommendation indeed.

• Compared to DPVP(w/o time) without period-varying mod-
eling component and DPVP(time emb) simply taking time
embedding as input, DPVP performs better through mod-
eling subgraphs of different periods constructed based on
the periodic patterns. Specifically, compared with DPVP(w/o
time), for MT-large dataset, the minimum improvement of
the three metrics over different periods is 1.17% (i.e., MRR
in Noon period) and for MT-small dataset, the smallest im-
provement of these metrics is 3.91% (i.e., Hit@10 for Late
Night period).

In particular, to prove our model can effectively capture the
periodic period-varying patterns shown in Figure 2, we provide a
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Figure 7: Performance w.r.t the number of layers 𝐿 on the two datasets.

Figure 8: Performance w.r.t the dimension of embedding vectors 𝑑 on the two datasets.

visualization of the average predicted scores (i.e., 𝑦𝑢,𝑠,𝑂,𝑚 in Eq. 9)
of five major food categories o (o in 𝑂) over different time periods
in MT-small test data. As shown in Figure 6, we can clearly observe
that: the predicted score of Baozi/Porridge commonly served as a
breakfast food in the Morning period is significantly higher than
that in other periods; Likewise, the barbecue, which is usually
chosen as a midnight snack, also scores higher in the Late Night
period; Besides, encouragingly, the predicted scores of Dish are
higher in Noon and Night periods than those in Morning and Late
Night periods as expected; Moreover, the interaction characteristics
between users and noodle category do not change significantly
over time, as shown in Figure 2. Within the expectation, there is no
apparent difference in the predicted scores of noodle over different
time periods.

5.4 Online A/B test(RQ3)
We deploy our method to the Meituan Takeaway recommender
system and conduct a two-week online A/B test. We leverage the
learned graph embeddings from our DPVP model as additional
features in the downstream recommendation model, and increase
the GMV(Gross Merchandise Volume) by 0.70%, the CTCVR(Click
Through & Conversion Rate) [18] by 0.68% in one of the main
recommendation scenarios, which demonstrates the effectiveness
of our method.

5.5 Hyper-Parameter Studies (RQ4)
Impact of Model Depth. To study the impact of the model depth
of the graphs, we vary 𝐿 from 1 to 4. As shown in Figure 7 shown,
we find that DPVP basically improves first and then drops, which
is a trade-off of performance gain from high-order information
(by stacking 𝐿 layers to reach 𝐿-hop neighbors) and performance
degradation caused by over-smoothing. Since DPVP achieves the
best performance with two layers, we set 𝐿 = 2 for both datasets.

Impact of Embedding Dimension. To investigate the perfor-
mance of DPVP on the two datasets with respect to the dimension
of embedding vectors (i.e., 𝑑), we vary 𝑑 in {20, 50, 100, 200}. As
shown in Figure 8, with the increase of embedding dimension, the
performance of DPVP shows a trend of first increasing and then
decreasing and DPVP performs best with the embedding dimension
equaling 100. Thus, we set 𝑑 = 100 for the two datasets.

6 CONCLUSION
In this paper, in order to model users’ dual period-varying pref-
erences in takeaway recommendation, we propose a novel graph-
basedmodel, namedDPVP. Specifically, we design a dual interaction-
aware module for modeling the dual preferences. Furthermore, we
propose a time-based decompositionmodule as well as a time-aware
gating network for capturing time-varying preferences. Extensive
experiments on two real-world datasets from Meituan platform
and online A/B tests empirically demonstrate the superiority of
our model. Additionally, studies prove that our model can improve
the recommendation performance for all time periods and is able
to capture users’ varying preferences over different periods. As
further work, we plan to explore incorporating additional time fac-
tors, such as seasons and holidays, to more accurately model users’
varying preferences for takeaway recommendation.
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A EXPERIMENT
A.1 Data desription
The details of the statistics of MT-small and MT-large datasets are
summarized in Table 3.
Table 3: The statistics of the two datasets from Meituan.

Dataset #User #Store #Food #User-Store Interaction

MT-small 56,887 4,059 5,952 180,283
MT-large 385,381 18,770 17,111 1,492,164

A.2 Detailed Implementation
The hidden sizes of MLP described in Section 4.4 are set as [400,200]
by default. For each store, we get its 10 most frequently clicked
foods as its candidate food in the training data (i.e.,𝑁 ′ = 10 in Eq. 7).
Section 5.5 reports the impact of other essential hyper-parameters
including the model depth 𝐿 and the dimension of latent vectors
𝑑 (i.e., the embeddings of users, stores, foods and time periods) in
DPVP, and we utilize the best parameter settings. Under the above
settings, all models are trained using AdamW optimizer [17] with
a learning rate of 1e-4, batch size of 1024 and weight decay of 1e-5.

A.3 Baselines
We compare our proposed model against two groups of state-of-
the-art recommendation methods as follows:
(1) Graph-free methods:

• NeuMF [10]. This method combines linear matrix factor-
ization with the nonlinear MLP to extract low-order and
high-order features for prediction.

• DNN. This is a vanilla deep-learning model for recommen-
dation prediction.

• ENMF [4]. This model is a neural recommendation model
that considers all samples in each parameter update without
sampling.

• SimpleX [19]. This method integrates Matrix Factorization
and user behavior modeling for prediction.

(2) Graph-based methods:
• GCN [26]. This method enrichs user and store representa-
tions through feature transformation, neighborhood aggre-
gation, and nonlinear activation on graph.

• GAT [30]. Considering the different importance of neighbor
nodes to the central node, this model leverages the attention
mechanism [29] to weight the importance of neighbors in
the aggregation process.

• NGCF [32]. This model advances the vanilla GCN by ad-
ditionally encoding the interactions via an element-wise
multiplication.

• HGT [11]. This GNNmodel designs edge-type and node-type
dependent parameters to deal with different interaction types
and learn the node representations from the heterogeneous
graph.

• LightGCN [9]. This method simplifies GCN by removing
unnecessary feature transformation and nonlinear activation
parts. It merely adopts neighborhood aggregation to capture
the collaborative filtering effect.

• UltraGCN [20]. This model further simplifies LightGCN by
replacing neighborhood aggregation with weightedMF, lead-
ing to faster convergence and less complexity.

• SVD-GCN [21]. This method simplifies GCN-based methods
by solely exploiting K-largest singular vectors of a flexible
truncated SVD for the recommendation.

All graph-based methods are aggregated on the full-period global
graph for the enriched representations. Since we focus on store
recommendation in this work, we treat the store as the item. In all
the baselines except CF-based methods (i.e., NeuMF and NGCF) , we
adopt MLP described in Section 4.4 as the final prediction layer with
user and store representations as input. To be fair, the parameter
settings of MLP in baselines are the same as that of our proposed
DPVP.

A.4 Supplement for impact of period-varying
modeling

In Figure 9 and Figure 10, we present the impact of period-varying
modeling on results for different time periods on AUC metric in
the two datasets.

Figure 9: Impact of period-varying modeling on results for
different time periods on AUC metric in MT-small dataset.

Figure 10: Impact of period-varying modeling on results for
different time periods on AUC metric in MT-large dataset.
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